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Abstract

Natural convection in enclosed spaces has been analyzed and numerically evaluated using a direct buoyancy model

which replaces the pseudo-density difference which has been heretofore standard in all previous studies of internal

natural convection of gases. It was demonstrated conclusively that the pseudo-density-difference model is totally ir-

relevant to the physical processes which create the buoyancy. When properly accounted, the presence of the pseudo-

density difference does no harm, but it provides a source of confusion for the source of the buoyant forces which create

motion. This conclusion was drawn from numerical solutions of three-dimensional natural convection in an oven-like

cavity. These solutions were irrefutably supported by experimental data. It was also demonstrated that accounting for

the naturally occurring pressure variations within the enclosed space had a negligible effect upon the surface heat

transfer coefficients. The commonly used Boussinesq equation of state was found to provide accurate surface heat

transfer results provided that the density, thermal conductivity, viscosity, and coefficient of thermal expansion are

evaluated at a temperature that is the average of the temperatures of the surfaces which bound the enclosed space.

� 2003 Elsevier Ltd. All rights reserved.
1. Introduction

The history of analytical solutions to natural con-

vection problems had its origin with the pioneering pa-

per of Schmidt and Beckmann [1] that dealt with the

boundary layer on a vertical heated plate. That paper

marked the advent of the use of the Boussinesq model

for calculating the density differences that occur across

the boundary layer. The occurrence of the density dif-

ference in the Schmidt and Beckmann problem is based

on the logical representation of the vertical pressure

gradient in the boundary layer by the vertical pressure

gradient in the quiescent environment outside the
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boundary layer. Inasmuch as the computational tools

available to Schmidt and Beckmann were quite limited,

it was necessary to transform the naturally occurring

density difference to a corresponding temperature dif-

ference, and that transformation was accomplished by

the Boussinesq equation of state. Subsequent work on

natural convection boundary layers involved naturally

occurring density differences which were always trans-

formed to temperature differences in the aforementioned

manner.

Problems of internal natural convection first at-

tracted attention several decades after the Schmidt and

Beckmann work. By that time, workers in the field had

become accustomed to the presence of a naturally oc-

curring density difference and continued to employ the

Boussinesq approach; however, a forthright appraisal of

natural convection in enclosed spaces does not reveal a

naturally occurring density difference. The early practice

of employing such a density difference appears to have
erved.
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Nomenclature

g gravitational acceleration (m/s2)
�hhBOT surface-averaged convective heat transfer

coefficient on the bottom surface of the

thermal load (W/m2 K)
�hhFRONT surface-averaged convective heat transfer

coefficient on the front surface of the ther-

mal load (W/m2 K)
�hhREAR surface-averaged convective heat transfer

coefficient on the rear surface of the thermal

load (W/m2 K)
�hhSIDE surface-averaged convective heat transfer

coefficient on the left and right surfaces of

the thermal load (W/m2 K)

��hh�hh all-surface-averaged convective heat transfer

coefficient on the thermal load (W/m2 K)

P local pressure (N/m2)

P0 hydrostatic pressure (N/m2)

P 0 reduced pressure (P � P0), (N/m2)

T temperature (K)

T0 reference temperature (K)

y vertical coordinate (m)

Greek symbols

b coefficient of thermal expansion (K�1)

q density (kg/m3)

q0 hydrostatic density (kg/m3)
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influenced all the computational investigations of inter-

nal natural convection. Indeed, this practice continues to

the present day, as witnessed by the numerous ‘‘bench-

marking’’ solutions that have been published over the

last several decades [2–9].

For internal natural convection, the pseudo-density

differences were created by algebraic manipulation of the

vertical pressure gradient. This pseudo-density difference

implies a physical mechanism for buoyancy that is dif-

ferent from that which actually occurs in internal natu-

ral convection. Inasmuch as the solutions of natural

convection problems based on the Boussinesq model do

not require a knowledge of the pressure field within the

enclosed space, the aforementioned manipulation could

be utilized without complication.

Two recent papers [10,11] dealing with internal nat-

ural convection appear, at first glance, to have made a

major departure from the previously standard Bous-

sinesq approach based on the aforementioned pseudo-

density difference. Those studies continue the practice of

employing a pseudo density-difference, but use the ideal

gas law instead of the Boussinesq equation of state. This

treatment contains the logical inconsistency associated

with the pseudo-density term although it is an im-

provement over the past in that it uses a more appro-

priate equation of state.

In evaluating the ideal gas law, the pressure field

within the enclosed space is necessary. In this regard, it

is necessary to pay very careful attention to the formu-

lation of the pressure boundary conditions. From an

examination of the analyses presented in [10,11], it was

found that there was no mention made of a pressure

boundary condition. Furthermore, in the creation of the

pseudo-density term, the fictive subtractive density

contribution was treated in dissimilar ways in the two

references being discussed. In [10], this subtractive term
was a constant, while in [11], the subtractive term was an

exponentially varying function of the vertical coordi-

nate. The different approaches to the subtractive term in

the two references is the result of a different assumption

about the nature of the ‘‘hydrostatic’’ density variation.

Since neither of these subtractive densities is true to re-

ality, it is not remarkable that different models were used

to describe them. In fact, the notation of a hydrostatic

state is, itself, a mental construct.

Surprisingly, it may be noted that [11] did not take

note of the existence of [10] which had been published

two years earlier. This is understandable because the

issue of the treatment of the buoyancy term via the ideal

gas law was a side issue in [10] and was mentioned only

in a single sentence imbedded in the interior of the

paper.

Although not appearing in the published literature,

the treatment of buoyancy in the well-known FLUENT

CFD software also includes a pseudo-density difference

[12]. In order to restore the FLUENT natural convec-

tion model to its unadulterated state, the present authors

have eliminated the pseudo-density difference.

In the present investigation, which encompassed

three-dimensional natural convection in an enclosed

space having a centered body, the body force was eval-

uated by the ideal gas law without the complication of

creating a pseudo-density difference to construct a

buoyancy force. Therefore, the ambiguities and logical

inconsistencies which were cited in the foregoing para-

graphs were not encountered. Furthermore, careful at-

tention was paid to the proper specification of a pressure

boundary condition in recognition of the fact that the

ideal gas law requires the pressure field for its proper

evaluation. For further perspective, two versions of the

ideal gas law were utilized. In one, the pressure was

permitted to vary naturally throughout the enclosed



E.M. Sparrow, J.P. Abraham / International Journal of Heat and Mass Transfer 46 (2003) 3583–3591 3585
space, whereas in the other, the density was evaluated at

a constant pressure. Additional perspective was ob-

tained by employing the full ideal gas formulation while

retaining the pseudo-density term. Finally, the widely

used Boussinesq equation of state was also examined

from the standpoint of comparison of the solutions

obtained there from the solutions obtained from the

physically correct model.

In addition to considering three-dimensional issues,

the present work took account of various heating modes

at the enclosure wall including the presence of a discrete

patch (due to a rod-like heater) and continuous heating

away from the discrete patch. The centered body mod-

eled the presence of a thermal load such as that which

might be encountered either in food or materials pro-

cesses.

To provide the ultimate verification of the present

computational work, the heat transfer results predicted

by the use of the full ideal gas formulation were com-

pared with experimental data collected by the authors

[13].
2. Treatment of the body force

In the momentum equation for the vertical direction

(y being positive upwards), the naturally occurring

pressure and body force terms are

� oP
oy

� qg: ð1Þ

In the approach adopted by the authors, these terms

were treated as they appear in Eq. (1). On the other

hand, to the best knowledge of the authors, all prior

investigators of internal natural convection have em-

ployed a pseudo-density difference whose derivation

begins with the introduction of a fictive hydrostatic state

defined by

� oP0
oy

¼ q0g; ð2Þ

where P0 and q0 respectively denote the hydrostatic

pressure and density. For the most part, the density q0
has been taken to be a constant, but in [11], it was

evaluated via the ideal gas law at a uniform temperature.

When the hydrostatic state is introduced into Eq. (1), the

pseudo density-difference appears

� oðP � P0Þ
oy

� ðq � q0Þg: ð3Þ

The next step in the derivation of the heretofore stan-

dard buoyancy model is to define a reduced pressure

P 0 ¼ P � P0; ð4Þ
which leads to

� oP 0

oy
� ðq � q0Þg: ð5Þ

Eq. (5), with or without the prime (0), is the generally

encountered representation of the buoyancy term for

internal flows.

The shift in the pressure variable as indicated in Eq.

(4) is of little relevance when the Boussinesq equation of

state is used to evaluate ðq � q0Þ. This is because

ðq � q0Þ is replaced by a bqðT0 � T Þ, where q is an ex-

ternally prescribed quantity and is not calculated by the

computer program. Indeed, once the Boussinesq ap-

proximation has been made, all of the densities which

appear in the conservation laws are evaluated as the

same externally prescribed constant. If the ideal gas law

were to be used to evaluate the density, then the shift in

the pressure variable as indicated in Eq. (4) must be

carefully accounted for when the pressure is introduced

into the ideal gas law.

It is clear from the foregoing that the pseudo-density

difference introduced in Eq. (3) is a fabricated construct

which has little to do with the physical processes which

create buoyancy within an enclosed space. Its presence

does no harm provided that it is properly accounted. It

is the view of the present authors that the fabrication of

the pseudo-density difference is not only irrelevant to the

physical understanding of the buoyancy process as it

occurs in enclosed spaces, but also may lead to numer-

ical errors if it is not properly accounted. It is the further

belief of the authors that the logical approach to mod-

eling buoyancy in enclosed spaces is to make use of the

naturally occurring terms that appear in Eq. (1).
3. Problem definition

The physical problem chosen to demonstrate the use

of the direct formulation of the buoyancy term, Eq. (1),

was selected because of the availability of experimental

data to test the accuracy of the computational predic-

tions. The geometry of the internal space consisted of a

three-dimensional, rectangular enclosure within which

there was a center body. This situation was intended as a

model for the heating of a thermal load situated in an

oven. The oven walls were maintained at a uniform

temperature which exceeded the uniform temperature

assigned to the thermal load (450 and 300 K respec-

tively). In addition to the heating of the load due to the

elevated temperatures of the oven walls, further heating

was provided by a linear heat source situated on the

floor of the oven. It is believed that the complexity of

the selected problem provided a demanding test of the

buoyancy model that has been described in the fore-

going section of this paper.
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Four different cases were investigated for the afore-

mentioned geometry and thermal boundary conditions.

These included:

• Ideal gas model used to evaluate the density variation

throughout the oven cavity. This model did not in-

clude the presence of the pseudo-density term, and,

therefore, represents the natural approach to the

buoyancy evaluation. The density variation was in-

corporated into all terms in the conservation equa-

tions in which the density appears.

• Ideal gas model used to evaluate the density variation

throughout the oven cavity. This model included the

presence of the pseudo-density term. For this case, in

common with the practice adopted for the preceding

case, the density variation was incorporated into all

terms in the conservation equations in which the den-

sity appears.

• Modified ideal gas model in which the pressure vari-

ations throughout the oven were omitted in the eval-

uation of the density (isobaric ideal gas model). This

model also included the presence of the pseudo-

density difference. As in the prior cases, the density

variation was incorporated into all of the relevant

terms of the conservation equations.

• Boussinesq equation of state was used for the evalu-

ation of the buoyancy term. The density which ap-

pears in all the other terms of the conservation

equations was evaluated at a constant corresponding

to a pressure of one atmosphere and a reference tem-

perature which was the average of the respective tem-

peratures of the oven walls and the thermal load.

In all of the cases just described, the other thermo-

physical properties k and l, respectively the thermal

conductivity and the viscosity, were evaluated at the

reference temperature.

The software selected for the numerical simulations

of the convective flow and heat transfer was the FLU-

ENT 6.0 program. In the default mode for internal

natural convection flows, the program provides an in-

ternally calculated value of the quantity q0 which ap-

pears in Eq. (5). The calculation of q0 was performed
by averaging the local densities in each of the control

volumes that constituted the solution domain. In order

to eliminate the pseudo-density difference, the present

authors manually set q0 ¼ 0.

The solution domain was subdivided into approxi-

mately 850,000 control volumes in order to properly

resolve the small-scale features of the fluid flow and

temperature fields. Accuracy was enhanced by the use of

a double-precision solver. The use of this solver was

motivated by the fact that the discretized equations in-

volved the differencing of numbers of very similar

magnitude such as those that occur in the velocity

field.
The Rayleigh number which characterized the solu-

tions was 6� 105 based on the vertical height of the

thermal load. Had the Rayleigh number been based on

the vertical height of the oven cavity, its value would

have been 6� 108.

Two complementary numerical techniques were em-

ployed to stabilize the iterative mode of solution. One of

these involved the fictive use of reduced gravity to arti-

ficially diminish the Rayleigh number during the early

stages of the calculations. As the calculations proceeded,

the gravity value was successively increased to its proper

value. The second approach made use of the under-

relaxation factors for the various transport equations. It

was found highly advantageous to use minimal values of

the under-relaxation factor for the momentum equa-

tions. These values were in the range of 0.01–0.05. For

the other transport equations, relaxation factors be-

tween 0.1 and 0.3 were typical.

Numerical experiments were performed to seek the

most appropriate mode of treating the convection terms.

Investigated approaches included both first-order up-

winding and second-order upwinding. Since the latter

requires greater computational time to implement, the

former was used during the initial iterations for a given

case, and the latter was brought online when the con-

verged solution was approached. For the pressure–

velocity coupling, the SIMPLE algorithm was used.

The numerical simulations were carried out under

the assumption of laminar flow and heat transfer. The

choice of the laminar model was motivated by the

Rayleigh number range of the analyzed physical system,

the largest value of which was 6� 105.

All of the numerical solutions were obtained by use

of an IBM SP supercomputer. About 50,000 iterations

were required to converge the solutions for the respec-

tive cases. Convergence was identified by monitoring the

surface heat transfer rates at the respective surfaces of

the thermal load. The attainment of convergence was

identified by the constancy of each of the surface heat

flows to three significant figures as the number of iter-

ations was systematically increased.
4. Results and discussion

4.1. Surface heat transfer coefficients

From the standpoint of engineering practice, the

quantities of greatest interest are the heat transfer co-

efficients at the various surfaces of the thermally active

object. In the present instance, the thermally active ob-

ject is the load that is centrally situated in the oven

cavity. The load is a six-sided block. In addition to the

heat transfer coefficients �hh that are specific to each of the
individual surfaces, the all-surface-average heat transfer
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coefficient ��hh�hh is also tabulated. Note that, due to sym-

metry, a single value of �hh is applicable for two of the side
surfaces. The heat transfer coefficients for the respective

sides are listed in Table 1 for each of the four models of

the buoyancy term that were described earlier.

By comparing the four columns of results exhibited

in the table, it is seen that there is remarkable agreement

among the heat transfer coefficients provided by the

various models. Of particular interest are the second and

third columns. The virtually perfect agreement evi-

denced in these columns verifies the physical expectation

that the pseudo-density difference does no harm when it

is properly accounted.

Examination of the fourth column of the table re-

veals the effect of not accounting for the pressure vari-

ations throughout the enclosed space. The impact of this

neglect is seen to be of the order of 1–3%, depending on

the side of the load being considered. The results based

on the Boussinesq model are listed in the fifth column of

the table. The apparent remarkable accuracy of these

results must be viewed in light of the manner in which

the density, thermal conductivity, and viscosity were

evaluated. These quantities were determined at a refer-

ence temperature that was the average of the tempera-

tures of the oven walls and the surfaces of the thermal

load. The use of a reference temperature of this pre-

scription is the most commonly specified recipe for

property evaluation. The results of the Boussinesq

model displayed here strongly reinforce the use of this

reference temperature.

It is relevant to compare the calculated results dis-

played in Table 1 with experimental data reported in

[13]. In that reference, information is provided for the

combined effects of natural convection and thermal ra-

diation. For one of the cases for which experiments were

performed, the radiative effects were minimized by em-

ploying surfaces of very low emissivity (0.03). After

correcting for the small radiation contribution for that

case, the all-surface-average convective heat transfer

coefficient was found to be 5.97 W/m2 K. This experi-

mental result is in astonishingly good agreement (�1%)
with the ��hh�hh value presented in Table 1 for the ideal gas
Table 1

Comparison of surface-averaged heat transfer coefficients for the six

buoyancy term in the momentum equation

Surface Ideal gas without

pseudo-density

difference

Ideal gas wit

pseudo-densi

difference

Per-surface- and all-surface-averag
�hhTOP 4.89 4.89
�hhBOT 5.87 5.87
�hhSIDE 7.27 7.27
�hhFRONT 6.81 6.79
�hhREAR 7.44 7.44
��hh�hh 6.05 6.05
model. Even for the ��hh�hh which corresponds to the Bous-

sinesq model, the deviation is just under 3%.

4.2. Temperature field comparisons

A further evaluation of the effect of the different

models of buoyancy is provided by an examination of

the temperature fields within the enclosure. Inasmuch

as the problem is three-dimensional, a full presentation

of the temperature field would require a large number of

figures. For the present purposes, it is sufficient to show

the temperature field in a symmetry plane that bisects

the thermal load and the oven cavity. Contour diagrams

showing isotherms are presented in Figs. 1–4, respec-

tively for the four investigated cases.

Inspection of the figures reveals virtually no effect of

the buoyancy model on the temperature fields. This

outcome is to be expected for the models depicted in

Figs. 1 and 2. As already noted, these models differ only

by the inclusion or the omission of the pseudo-density

term. The precisely identical temperature fields illus-

trated in Figs. 1 and 2 are further testimony to the as-

sertion that the presence of the pseudo-density term does

no harm when it is properly accounted.

The special feature of the density model of Fig. 3 is its

isobaric nature. However, a comparison of Fig. 3 with

either of Figs. 1 or 2 reveals only slight differences in

detail. It may, therefore, be concluded that the ac-

counting or non-accounting of the pressure variations is

a lower-order effect.

Fig. 4 exhibits the temperature field that corresponds

to the Boussinesq equation of state. A comparison of the

isotherms of Fig. 4 with those of the preceding figures

again reveals only slight differences. This outcome is

further corroboration of the effectiveness of the refer-

ence temperature choice that was made in the evaluation

of the thermophysical properties.

4.3. Velocity field comparisons

As a final demonstration of the effect of the buoy-

ancy model, velocity field information is presented in
-sided thermal load as calculated from various models of the

h

ty

Isobaric ideal gas model

with pseudo-density

difference

Boussinesq model

ed heat transfer coefficients (W/m2 K)

4.84 4.80

5.96 6.00

7.33 7.26

6.85 6.90

7.21 7.20

6.06 6.14



Fig. 2. Temperature field for ideal gas model with pseudo-density difference.

Fig. 1. Temperature field for ideal gas model without pseudo-density difference.

3588 E.M. Sparrow, J.P. Abraham / International Journal of Heat and Mass Transfer 46 (2003) 3583–3591



Fig. 4. Temperature field for Boussinesq model.

Fig. 3. Temperature field for isobaric ideal gas model with pseudo-density difference.
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Fig. 5. Pathlines for the ideal gas model without pseudo buoyancy.

Fig. 6. Pathlines for the Boussinesq model.
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Figs. 5 and 6. These figures, respectively, correspond to

the ideal gas model without the pseudo-buoyancy term

and to the Boussinesq model. The pathlines that are

exhibited correspond to a symmetry plane that bisects

the thermal load and the oven cavity. Careful inspection

of the figures suggests an overall similarity in the path-

lines, but there are interesting differences in detail. For
example, the flow bifurcation that is identified in Fig. 5

occurs above the exhibited region in Fig. 6. On the other

hand, the distinct eddy that is identified at the lower left

of Fig. 6 has not quite formed in Fig. 5.

Although the aforementioned differences in the flow

patterns are of theoretical interest, it is relevant to note

that in the immediate neighborhood of the thermal load,
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the velocity fields for the two cases are very similar. It is

believed that the near-wall velocity field is most signifi-

cant in determining the surface heat transfer results.

5. Concluding remarks

It has been shown conclusively in this paper that the

tradition of employing a pseudo-density difference to

represent buoyancy for internal natural convection of

ideal gases is irrelevant to the physical mechanisms that

create the buoyancy force. When treated properly, the

presence of a pseudo-density difference does no harm,

but it tends to confuse the factors that create and sustain

the natural convection. It was also demonstrated that the

effect of pressure variations within the enclosed space has

a negligible effect on the buoyancy and on the resulting

surface heat transfer coefficients. In the absence of the

ideal gas model, it was demonstrated that the Boussinesq

equation of state gives satisfactory results provided that

the density, thermal conductivity, viscosity, and coeffi-

cient of thermal expansion are all evaluated at a tem-

perature that is the average of the temperatures of the

walls which bound the enclosed space.

The validity of these conclusions and the accuracy of

the numerically obtained heat transfer coefficients is

strongly supported by experimental data collected by the

authors. The agreement of the numerically determined

and experimentally obtained heat transfer results was on

the order of 1%.
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